The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation.
نویسندگان
چکیده
The transcription factor osterix (Sp7) is essential for osteoblastogenesis and bone formation in mice. Genome wide association studies have demonstrated that osterix is associated with bone mineral density in humans; however, the molecular significance of osterix in human osteoblast differentiation is poorly described. In this study we have characterized the role of osterix in human mesenchymal progenitor cell (hMSC) differentiation. We first analyzed temporal microarray data of primary hMSC treated with bone morphogenetic protein-6 (BMP6) using clustering to identify genes that are associated with osterix expression. Osterix clusters with a set of osteoblast-associated extracellular matrix (ECM) genes, including bone sialoprotein (BSP) and a novel set of proteoglycans, osteomodulin (OMD), osteoglycin, and asporin. Maximum expression of these genes is dependent upon both the concentration and duration of BMP6 exposure. Next we overexpressed and repressed osterix in primary hMSC using retrovirus. The enforced expression of osterix had relatively minor effects on osteoblastic gene expression independent of exogenous BMP6. However, in the presence of BMP6, osterix overexpression enhanced expression of the aforementioned ECM genes. Additionally, osterix overexpression enhanced BMP6 induced osteoblast mineralization, while inhibiting hMSC proliferation. Conversely, osterix knockdown maintained hMSC in an immature state by decreasing expression of these ECM genes and decreasing mineralization and hMSC proliferation. Overexpression of the osterix regulated gene OMD with retrovirus promoted mineralization of hMSC. These results suggest that osterix is necessary, but not sufficient for hMSC osteoblast differentiation. Osterix regulates the expression of a set of ECM proteins which are involved in terminal osteoblast differentiation.
منابع مشابه
Runx3 negatively regulates Osterix expression in dental pulp cells.
Osterix, a zinc-finger-containing transcription factor, is required for osteoblast differentiation and bone formation. Osterix is also expressed in dental mesenchymal cells of the tooth germ. However, transcriptional regulation by Osterix in tooth development is not clear. Genetic studies in osteogenesis place Osterix downstream of Runx2 (Runt-related 2). The expression of Osterix in odontoblas...
متن کاملHistone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix.
Post-translational modifications of histones including methylation play important roles in cell differentiation. Jumonji domain-containing 3 (Jmjd3) is a histone demethylase, which specifically catalyzes the removal of trimethylation of histone H3 at lysine 27 (H3K27me3). In this study, we examined the expression of Jmjd3 in osteoblasts and its roles in osteoblast differentiation. Jmjd3 express...
متن کاملBone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells.
AIMS Vascular calcification contributes to mortality and morbidity in atherosclerosis, chronic kidney disease, and diabetes. Vascular calcific lesions contain osteoblast- and chondroblast-like cells, suggesting a process of endochondral or membranous ossification thought to result from the phenotypic plasticity of vascular cells. Bone morphogenetic protein (BMP) signalling potentiates atheroscl...
متن کاملSp7/Osterix is involved in the up-regulation of the mouse pro-α1(V) collagen gene (Col5a1) in osteoblastic cells.
Sp7/Osterix, a transcription factor whose expression is restricted in osteoblasts, belongs to the Sp family of transcription factor that bind to G/C-rich sequences. Previous studies have identified a Sp1binding site in the proximal promoter region of the mouse Col5a1 gene, but it did not activate or repress this gene in a mouse fibroblast cell line and a human rhabdomyosarcoma cell line. The pu...
متن کاملOsterix represses adipogenesis by negatively regulating PPARγ transcriptional activity
Osterix is a novel bone-related transcription factor involved in osteoblast differentiation, and bone maturation. Because a reciprocal relationship exists between adipocyte and osteoblast differentiation of bone marrow derived mesenchymal stem cells, we hypothesized that Osterix might have a role in adipogenesis. Ablation of Osterix enhanced adipogenesis in 3T3-L1 cells, whereas overexpression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular physiology
دوره 227 6 شماره
صفحات -
تاریخ انتشار 2012